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Abstract. We study diffusion in d = 2 percolation clusters at criticality under the influence 
of an external time-dependent field E ( t )  = Eo sin(wt). We find that the mean displacement 
( x ( t ) )  of a random walker is a periodic function with a phase shift cp = f . ~  independent of 
w and E,. The amplitude A(Eo, w )  of ( x ( t ) )  is linear in Eo below a crossover field E t ( w ) .  
Above E $ ( w ) ,  A(E,, w )  is strongly non-linear, showing a maximum as a function of Eo. 
We find that both the linear and the non-linear regime can be described by a single scaling 
function: A(Eo, U ) -  E , w - 2 ’ d ~ F ( E , / E ~ ( w ) )  where dw=2.87 is the diffusion exponent and 
E $ ( o ) - w a  with p-0.3. The linear response regime is reached for Eo/w@<< 1. 

In recent years, the problem of transport in random media has been studied extensively. 
While some progress has been achieved in understanding unbiased diffusion (see, e.g., 
[l-51) or diffusion under the influence of a constant bias field [6-111, studies of 
transport in the presence of an external time-dependent field have been mainly restricted 
to the linear response regime [ 12- 141. 

In this letter we study how the motion of a random walker in a disordered structure 
is affected by a time-dependent alternating field with arbitrary field strength. For 
specificity, we consider the incipient infinite percolation cluster [ 5 ]  in d = 2 and apply 
a sinusoidal field 

E ( t )  = Eo sin(ot). (1) 

We find that under the influence of this field the mean displacement ( x ( t ) )  of the 
walker is a periodic function with a phase shift of cp = f ~  relative to the external field. 
While cp is independent of o and Eo, the amplitude A(Eo, U )  is non-linear in Eo: for 
small o, A(Eo, U )  exhibits a maximum as a function of Eo. This non-linear behaviour 
results from the interplay of two competing processes: (i) the field induces a drift 
which tends to increase the amplitude with increasing field strength Eo and (ii) the 
field drives the walker into the dangling ends, an effect by which the amplitude is 
decreased with increasing Eo. For a constant bias field, the second process is dominant 
[ll] and the motion of the walker is ultra-anomalously slow, characterised by a 
logarithmic time dependence [9,11]. In contrast, for the time-dependent field ( l ) ,  both 
processes are relevant which gives rise to the maximum in A(Eo, U ) .  We develop a 
scaling theory for A(Eo, U )  and find that a single scaling function adequately describes 
the amplitude in both the linear and the non-linear Eo regime. 
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In uniform non-random structures the mean displacement (x( t ) )  of a random walker 
under the influence of the field ( 1 )  is given by 

( x ( f ) ) = A ( E o ,  w)[sin(wt-cp)+A] ( 2 )  
where the phase shift is cp = iv, the amplitude A( Eo, w )  is proportional to E o / w  and 
A = 1. Since the current j ( t )  induced by the field is proportional to d(x(t))/dt, (2) 
implies that the real part of the frequency-dependent conductivity a ( w )  is independent 
of w. 

In random structures, for sufficiently small fields where linear response theory is 
valid, we expect that the form of (2) is maintained, but the amplitude, phase shift and 
A are changed. To see this, consider ~ ( w )  which.is related to the mean square 
displacement ( r2(  f ) )  of a random walker (without field) by [ 121 

a ( w ) -  -w21im J exp(-iwt) exp(-Vt)(r*(t)) dt. (3) 
1+0 0 

On self-similar structures (fractals) such as the incipient infinite percolation cluster, 
diffusion is anomalous [l]  and 

(r2( t ) )  - t2’d- (4) 

where dw is the diffusion exponent, dw-2.87 [15] in d = 2 percolation. From (3) and 
(4) we obtain 

a(o ) -exp[ i ( l -2 /d , )v /2 ]~~-~ ’~w.  ( 5 )  
Since the Fourier transformed current j ( w ’ )  is proportional to u ( w ’ ) E ( w ’ )  and E ( w ’ )  = 
EoS(w - w ’ ) ,  it follows from ( 2 )  and (5) that in the linear response regime, phase shift 
and amplitude are given by 

cp = v / d w  
and 

A( Eo, w )  - E , u - ~ / ~ - .  

These predictions are based on the assumption that the form of ( 2 )  remains 
unchanged for random structures in the linear response regime. Since for constant 
bias fields non-linear effects are strongly pronounced we expect that larger values of 
Eo give rise to non-linear behaviour and to strong deviations from ( 2 )  and (6) also for 
time-dependent fields. 

In order to study the linear and non-linear regime we have performed numerical 
simulations using the exact enumeration method (see, e.g., [ 151). This numerical 
method enables us to calculate exactly the distribution function P(r,  t )  of a random 
walker on a given percolation cluster for a fixed starting point ro.  First we generate 
a percolation cluster on a square lattice at criticality, using the Leath algorithm [5]. 
We assume a time-dependent bias field, ( l ) ,  along the xy direction and choose the 
transition rates W,,,,, between neighbouring cluster sites r and r + 6 accordingly?: 

6 = ( 1 , O )  or ( 0 , l )  
6 = ( - 1 , O )  or (0, - 1 )  (7) 

f ( l +  E ( f ) )  I f ( 1 -  E ( t ) )  
w,,,, = 

where by definitior, IE(t) l  =s 1 .  

By this choice, (7),  we simulate the ‘blind’ ant. If a jump is not allowed because the attempted site does 
not belong to the cluster then the walker stays in place. 
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Then the time evolution of P( r, t )  is calculated as follows. At t = 0, the walker 
starts at the origin, i.e. P(r, 0) = 
to the neighbouring cluster sites 6. Hence 

At t = 1, the walker steps with probability 

w0,s f o r r = b  

-E for r = 0. 
P(r ,  1) = 

s 

For r # 0 and r # 6, P(r,  1) = 0. By iterating this procedure we find P(r,  2), etc. From 
P(r,  t )  we obtain the mean displacement 

( r ( t ) )=  ( ( x ( t ) ) ,  ( y ( t ) ) )  =c rP(r, t )  ( 9 )  
I 

of the random walker with starting point at the origin for the considered cluster. In 
order to obtain the corresponding configurational averaged quantities one has to 
average over many clusters. For our actual computations, we generated clusters up to 
150 shells and averages over 200 configurations have been made. 

Representative results of ( x ( t ) )  for two values of Eo and constant frequency are 
shown in figure 1. For small fields ( a )  ( x ( t ) )  is accurately described by a sinusoidal 
curve, (2). In contrast, for large fields ( b )  strong deviations from sinusoidal behaviour 
occur. Nevertheless, the curve is still periodic and can be characterised by amplitude 
A(Eo, w )  and a phase shift cp. 

Figure 2 shows our results for A(Eo, w )  and cp in the whole range of Eo up to its 
maximum value Eo = 1 and various values of w. While for all considered values of Eo 
and w the phase shift cp is practically constant and accepts the linear response value 
from ( 6 a ) ,  the amplitude for large fields behaves differently from the amplitude for 
small fields. For sufficiently small fields and large w our results for A(E,, w )  (figure 
2) are described by linear response theory, ( 6 b ) .  For large fields and small frequencies 
strong deviations from linear response theory occur. To see this, we have plotted in 
figure 3 ( a )  A ( E o , w )  as a function of Eo for various values of w. Below a certain 
crossover field E $ ( w ) ,  A is linear in Eo representing the linear response regime. Above 
E $ ( w ) ,  strong non-linear effects are observed. The amplitude A(Eo, w )  exhibits a 
maximum at Eo = E $ ( w ) .  The crossover field decreases with decreasing w. The occur- 
rence of this maximum is a consequence of two competing processes which are caused 
by the bias field (1). On the one hand, the field induces a drift on the walker. If the 
field is increased the drift and correspondingly the amplitude of the walk tends to 
increase. On the other hand, the field drives the walker into dangling ends. This effect 
tends to decrease the amplitude and becomes more pronounced when the field is 
increased. For small fields and large frequencies the drift is dominant and A(E,,  CO) 

increases linearly with Eo, while for large fields and small frequencies the walker can 
easily get stuck in the dangling ends; the second process is dominant and A(Eo, U )  

decreases with increasing Eo. 
In the linear response regime, the amplitude is given by ( 6 b ) .  In order to generalise 

this result to the non-linear regime we assume that A(Eo, w )  can be written as 

(10) 

where F ( x )  is a scaling function. In order to satisfy ( 6 6 )  we must have F ( x )  = constant 
for x<< 1. By (lo), the crossover field E $ ( w )  is identified by U@. 

For testing the scaling assumption (10) and for determining the crossover exponent 
,8 and the scaling function we have plotted A(Eo, ~ ) / ( E , w - ~ ’ ~ w )  as a function of E o / w P  

A(Eo, w )  = E,w-”~w F (  EO/ w @ ) 
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Figure 1. Mean displacement (x( 1 ) )  of a random walker on the incipient percolation cluster 
under the influence of an external time-dependent field along the xy direction E ( t )  = 
(E, ,  E,)  sin(ot) for w =0.01. ( a )  shows ( ~ ( 2 ) )  for E,=0.1. The broken curve represents 
a sinusoidal fit. ( b )  shows ( x ( t ) )  for the maximum field strength, E, = 1. Strong deviations 
from sinusoidal behaviour occur. For comparison, the time dependence of the field is also 
shown (continuous curve). In both cases, the phase shift between (x( 1 ) )  and E ( r )  is roughly 
the same. In contrast to uniform systems, (2), ( ~ ( 2 ) )  becomes negative and thus A is 
considerably smaller than one. 
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Figure 2. Amplitude A(Eo, U )  and phase shift (p as a function of w for various values of 
field E,: 0.1 (V), 0.3 (0), 0.5 (A), 0.7 (U), 1 ( x ) .  The amplitude was obtained from the 
difference between maxima and successive minima of (x(r)) (see figure 1 ) .  

0 0.5 1.0 0.3 0.5 1.0 5.0 10.0 
Eo E, i d  

Figure 3. ( a )  Plot of A(Eo, w )  as a function of E, for various values of frequency w :  0.002 
(O), 0.005 (O),  0.01 (A), 0.02 (U), 0.05 (V), 0.1 (A).  ( b )  Plot of A(E,, W ) O * ’ ~ ~ / E , ,  against 
E, /wa  for fi  = 0.3. The data collapse supports the scaling assumption (10). 
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and have varied p. We have found that the best data collapse occurred at /3 = 0.3; the 
result is shown in figure 3 ( b ) .  At the moment we do not have an explanation for this 
value. For large x, the scaling function shows power law behaviour, F ( x )  - x-=, where 
a = 1.5. The data collapse in figure 3 ( b )  confirms our scaling assumption and shows 
that both the linear and the non-linear regime can be described by a single scaling 
function. 

We also calculated the fluctuation of the mean displacement, = 
( r 2 ( r ) ) - ( r ( t ) ) ’ ,  as a function of time for fixed w and various values of E,,. The data 
showed clearly that ((Ar)2) - t 2 ’ d w ,  d, = 2.87, following the same asymptotic law as for 
the non-biased case. This is expected since the fluctuations are governed by pure 
diffusion. 

We thank W Dieterich for discussions. This work has been supported by Deutsche 
Forschungsgemeinschaft (in particular SFB 306), Minerva and the USA-Israel Bi- 
National Foundation. 
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